Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.271
Filtrar
1.
Clin Transl Sci ; 17(5): e13781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700261

RESUMEN

The clinical application of Pharmacogenomics (PGx) has improved patient safety. However, comprehensive PGx testing has not been widely adopted in clinical practice, and significant opportunities exist to further optimize PGx in cancer care. This systematic review and meta-analysis aim to evaluate the safety outcomes of reported PGx-guided strategies (Analysis 1) and identify well-studied emerging pharmacogenomic variants that predict severe toxicity and symptom burden (Analysis 2) in patients with cancer. We searched MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and International Clinical Trials Registry Platform from inception to January 2023 for clinical trials or comparative studies evaluating PGx strategies or unconfirmed pharmacogenomic variants. The primary outcomes were severe adverse events (SAE; ≥ grade 3) or symptom burden with pain and vomiting as defined by trial protocols and assessed by trial investigators. We calculated pooled overall relative risk (RR) and 95% confidence interval (95%CI) using random effects models. PROSPERO, registration number CRD42023421277. Of 6811 records screened, six studies were included for Analysis 1, 55 studies for Analysis 2. Meta-analysis 1 (five trials, 1892 participants) showed a lower absolute incidence of SAEs with PGx-guided strategies compared to usual therapy, 16.1% versus 34.0% (RR = 0.72, 95%CI 0.57-0.91, p = 0.006, I2 = 34%). Meta-analyses 2 identified nine medicine(class)-variant pairs of interest across the TYMS, ABCB1, UGT1A1, HLA-DRB1, and OPRM1 genes. Application of PGx significantly reduced rates of SAEs in patients with cancer. Emergent medicine-variant pairs herald further research into the expansion and optimization of PGx to improve systemic anti-cancer and supportive care medicine safety and efficacy.


Asunto(s)
Neoplasias , Farmacogenética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Variantes Farmacogenómicas , Antineoplásicos/efectos adversos , Antineoplásicos/administración & dosificación , Adulto , Mutación de Línea Germinal , Pruebas de Farmacogenómica , Carga Sintomática
2.
Ann Hematol ; 103(6): 2133-2144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634917

RESUMEN

BACKGROUND: Empirical use of pharmacogenetic test(PGT) is advocated for many drugs, and resource-rich setting hospitals are using the same commonly. The clinical translation of pharmacogenetic tests in terms of cost and clinical utility is yet to be examined in hospitals of low middle income countries (LMICs). AIM: The present study assessed the clinical utility of PGT by comparing the pharmacogenetically(PGT) guided- versus standard of care(SOC)- warfarin therapy, including the health economics of the two warfarin therapies. METHODS: An open-label, randomized, controlled clinical trial recruited warfarin-receiving patients in pharmacogenetically(PGT) guided- versus standard of care(SOC)- study arms. Pharmacogenetic analysis of CYP2C9*2(rs1799853), CYP2C9*3(rs1057910) and VKORC1(rs9923231) was performed for patients recruited to the PGT-guided arm. PT(Prothrombin Time)-INR(international normalized ratio) testing and dose titrations were allowed as per routine clinical practice. The primary endpoint was the percent time spent in the therapeutic INR range(TTR) during the 90-day observation period. Secondary endpoints were time to reach therapeutic INR(TRT), the proportion of adverse events, and economic comparison between two modes of therapy in a Markov model built for the commonest warfarin indication- atrial fibrillation. RESULTS: The study enrolled 168 patients, 84 in each arm. Per-protocol analysis showed a significantly high median time spent in therapeutic INR in the genotype-guided arm(42.85%; CI 21.4-66.75) as compared to the SOC arm(8.8%; CI 0-27.2)(p < 0.00001). The TRT was less in the PG-guided warfarin dosing group than the standard-of-care dosing warfarin group (17.85 vs. 33.92 days) (p = 0.002). Bleeding and thromboembolic events were similar in the two study groups. Lifetime expenditure was ₹1,26,830 in the PGT arm compared to ₹1,17,907 in the SOC arm. The QALY gain did not differ in the two groups(3.9 vs. 3.65). Compared to SOC, the incremental cost-utility ratio was ₹35,962 per QALY gain with PGT test opting. In deterministic and probabilistic sensitivity analysis, the base case results were found to be insensitive to the variation in model parameters. In the cost-effectiveness-acceptability curve analysis, a 90% probability of cost-effectiveness was reached at a willingness-to-pay(WTP) of ₹ 71,630 well below one time GDP threshold of WTP used. CONCLUSION: Clinical efficacy and the cost-effectiveness of the warfarin pharmacogenetic test suggest its routine use as a point of care investigation for patient care in LMICs.


Asunto(s)
Anticoagulantes , Citocromo P-450 CYP2C9 , Economía Farmacéutica , Relación Normalizada Internacional , Vitamina K Epóxido Reductasas , Warfarina , Humanos , Warfarina/economía , Warfarina/administración & dosificación , Warfarina/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Citocromo P-450 CYP2C9/genética , Anciano , Vitamina K Epóxido Reductasas/genética , Anticoagulantes/administración & dosificación , Anticoagulantes/economía , Anticoagulantes/uso terapéutico , Pruebas de Farmacogenómica/economía , Adulto , Farmacogenética/economía , Análisis Costo-Beneficio
3.
Biochemistry (Mosc) ; 89(Suppl 1): S224-S233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621752

RESUMEN

The review discusses electrochemical methods for analysis of drug interactions with DNA. The electroanalysis method is based on the registration of interaction-induced changes in the electrochemical oxidation potential of heterocyclic nitrogenous bases in the DNA molecule and in the maximum oxidation current amplitude. The mechanisms of DNA-drug interactions can be identified based on the shift in the electrooxidation potential of heterocyclic nitrogenous bases toward more negative (cathodic) or positive (anodic) values. Drug intercalation into DNA shifts the electrochemical oxidation potential to positive values, indicating thermodynamically unfavorable process that hinders oxidation of nitrogenous bases in DNA. The potential shift toward the negative values indicates electrostatic interactions, e.g., drug binding in the DNA minor groove, since this process does not interfere with the electrochemical oxidation of bases. The concentration-dependent decrease in the intensity of electrochemical oxidation of DNA bases allows to quantify the type of interaction and calculate the binding constants.


Asunto(s)
ADN , Pruebas de Farmacogenómica , ADN/metabolismo , Interacciones Farmacológicas
4.
Pharmacogenomics J ; 24(3): 11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594235

RESUMEN

OBJECTIVE: To investigate factors affecting the efficacy and tolerability of verapamil for migraine prevention using individual pharmacogenomic phenotypes. BACKGROUND: Verapamil has a wide range of dosing in headache disorders without reliable tools to predict the optimal doses for an individual. METHODS: This is a retrospective chart review examining adults with existing pharmacogenomic reports at Mayo Clinic who had used verapamil for migraine. Effects of six cytochrome P450 phenotypes on the doses of verapamil for migraine prevention were assessed. RESULTS: Our final analysis included 33 migraine patients (82% with aura). The mean minimum effective and maximum tolerable doses of verapamil were 178.2(20-320) mg and 227.9(20-480) mg. A variety of CYP2C9, CYP2D6, and CYP3A5 phenotypes were found, without significant association with the verapamil doses after adjusting for age, sex, body mass index, and smoking status. CONCLUSIONS: We demonstrated a wide range of effective and tolerable verapamil doses used for migraine in a cohort with various pharmacogenomic phenotypes.


Asunto(s)
Trastornos Migrañosos , Verapamilo , Adulto , Humanos , Proyectos Piloto , Verapamilo/uso terapéutico , Pruebas de Farmacogenómica , Farmacogenética , Estudios Retrospectivos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/genética , Trastornos Migrañosos/prevención & control , Fenotipo
5.
Pharmacogenomics J ; 24(2): 9, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490995

RESUMEN

Adverse drug reactions (ADRs) are a significant public health concern and a leading cause of hospitalization; they are estimated to be the fourth leading cause of death and increasing healthcare costs worldwide. Carrying a genetic variant could alter the efficacy and increase the risk of ADRs associated with a drug in a target population for commonly prescribed drugs. The use of pre-emptive pharmacogenetic/omic (PGx) testing can improve drug therapeutic efficacy, safety, and compliance by guiding the selection of drugs and/or dosages. In the present narrative review, we examined the current evidence of pre-emptive PGx testing-based treatment for the prevention of ADRs incidence and hospitalization or emergency department visits due to serious ADRs, thus improving patient safety. We then shared our perspective on the importance of preemptive PGx testing in clinical practice for the safe use of medicines and decreasing healthcare costs.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pruebas de Farmacogenómica , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Hospitalización , Costos de la Atención en Salud , Farmacogenética
6.
Genes (Basel) ; 15(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38540411

RESUMEN

BACKGROUND: The advancement of next-generation sequencing (NGS) technologies provides opportunities for large-scale Pharmacogenetic (PGx) studies and pre-emptive PGx testing to cover a wide range of genotypes present in diverse populations. However, NGS-based PGx testing is limited by the lack of comprehensive computational tools to support genetic data analysis and clinical decisions. METHODS: Bioinformatics utilities specialized for human genomics and the latest cloud-based technologies were used to develop a bioinformatics pipeline for analyzing the genomic sequence data and reporting PGx genotypes. A database was created and integrated in the pipeline for filtering the actionable PGx variants and clinical interpretations. Strict quality verification procedures were conducted on variant calls with the whole genome sequencing (WGS) dataset of the 1000 Genomes Project (G1K). The accuracy of PGx allele identification was validated using the WGS dataset of the Pharmacogenetics Reference Materials from the Centers for Disease Control and Prevention (CDC). RESULTS: The newly created bioinformatics pipeline, Pgxtools, can analyze genomic sequence data, identify actionable variants in 13 PGx relevant genes, and generate reports annotated with specific interpretations and recommendations based on clinical practice guidelines. Verified with two independent methods, we have found that Pgxtools consistently identifies variants more accurately than the results in the G1K dataset on GRCh37 and GRCh38. CONCLUSIONS: Pgxtools provides an integrated workflow for large-scale genomic data analysis and PGx clinical decision support. Implemented with cloud-native technologies, it is highly portable in a wide variety of environments from a single laptop to High-Performance Computing (HPC) clusters and cloud platforms for different production scales and requirements.


Asunto(s)
Farmacogenética , Pruebas de Farmacogenómica , Humanos , Farmacogenética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Biología Computacional
7.
Drug Metab Pers Ther ; 39(1): 27-34, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507296

RESUMEN

OBJECTIVES: Carbamazepine (CBZ) is one of the oldest, yet first line drugs for treating epilepsy. However, there is a large inter-individual difference in requirement of maintenance dose and one third of persons treated with antiepileptic drugs (AEDs) exhibit drug resistance to therapy. One of the proposed mechanisms for the drug resistance was increased expression of efflux transporter P-glycoprotein. The pharmacogenetic studies of drug transporters (ABCB1) done in combination therapies of AEDs were inconclusive. Hence, we have attempted to study the impact of ABCB1 3435C>T genetic polymorphism and CBZ monotherapy in persons with epilepsy (PWE) from South India, which is a genetically distinct population. With this background, this study was aimed to determine the dose of CBZ in ABCB1 3435C>T genotypes and to determine the distribution of ABCB1 3435C>T genotypes (which codes P-glycoprotein) between responders and non-responders to CBZ therapy. METHODS: A cross sectional study was conducted in 200 persons with epilepsy, who were categorised as responders and non-responders according to ILAE (international league against epilepsy) criteria. Eligible participants were enrolled from the epilepsy clinic of the neurology department and five ml of blood was collected. DNA extraction and genotyping were done by phenol-chloroform method and real time polymerase chain reaction (RT-PCR), respectively. RESULTS: The mean maintenance dose of carbamazepine was statistically significant among different genotypes (p<0.05) of ABCB1 3435C>T (526 vs. 637 mg/day in CC vs. TT genotype). There was no significant association between ABCB1 3435C>T polymorphism (p=0.827) and CBZ resistance in PWE. Duration of disease and age of onset were found to be significant in predicting the response to CBZ therapy. CONCLUSIONS: We report that ABCB1 3435C>T polymorphism is significantly associated with an increase in dose requirement of CBZ in persons with epilepsy from South India.


Asunto(s)
Epilepsia , Polimorfismo de Nucleótido Simple , Humanos , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Benzodiazepinas/administración & dosificación , Benzodiazepinas/uso terapéutico , Carbamazepina/administración & dosificación , Carbamazepina/uso terapéutico , Estudios Transversales , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Genotipo , Polimorfismo de Nucleótido Simple/genética , Pruebas de Farmacogenómica
8.
Pharmacogenomics ; 25(4): 207-216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506331

RESUMEN

Aim: The study aim was to determine caregiver interest and planned utilization of pharmacogenomic (PGx) results for their child with Prader-Willi syndrome. Methods: Caregivers consented to PGx testing for their child and completed a survey before receiving results. Results: Of all caregivers (n = 48), 93.8% were highly interested in their child's upcoming PGx results. Most (97.9%) planned to share results with their child's medical providers. However, only 47.9% of caregivers were confident providers would utilize the PGx results. Conclusion: Caregivers are interested in utilizing PGx but are uncertain providers will use these results in their child's care. More information about provider comfort with PGx utilization is needed to understand how PGx education would benefit providers and ultimately patients with PGx results.


Asunto(s)
Farmacogenética , Síndrome de Prader-Willi , Niño , Humanos , Farmacogenética/métodos , Cuidadores , Síndrome de Prader-Willi/tratamiento farmacológico , Síndrome de Prader-Willi/genética , Encuestas y Cuestionarios , Pruebas de Farmacogenómica
9.
Nihon Yakurigaku Zasshi ; 159(2): 90-95, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38432925

RESUMEN

Pharmacogenetic testing benefits patients by predicting drug efficacy and risk of adverse drug reactions (ADRs). Pharmacogenetic biomarkers useful in clinical practice include drug-metabolizing enzyme and drug transporter genes and human leukocyte antigen (HLA) genes. HLA genes, which are important molecules involved in human immunity, have long been analyzed for associations with ADRs, such as skin rash, drug-induced liver injury, and agranulocytosis. HLA is composed of many genes, each of which has dozens of different types (alleles), and many HLA alleles associated with ADRs have been reported. The odds ratios in the association of HLA alleles range from approximately 5 to several thousand, indicating a very large impact on the risk of ADRs. Thus, HLA genetic testing prior to initiation of drug therapy is expected to make a significant contribution to avoiding ADRs, but to demonstrate the clinical utility, it is necessary to prospectively show the effects of medical interventions based on the test results. We conducted the GENCAT study, a prospective, multicenter, single-arm clinical trial to investigate the impact of a therapeutic intervention based on the HLA-A*31:01 test on the incidence of carbamazepine-induced skin rash. HLA-A*31:01-positive patients were treated with an alternative drug such as valproic acid, and the study showed an approximately 60% reduction in the incidence of carbamazepine-induced skin rash. It is expected that the genetic test, which has demonstrated clinical utility, will lead to the establishment of safer and more appropriate stratified medicine by reflecting the information in clinical practice guidelines.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Exantema , Humanos , Pruebas de Farmacogenómica , Estudios Prospectivos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Carbamazepina/efectos adversos , Antígenos HLA-A/genética
10.
Clin Transl Sci ; 17(3): e13737, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38421234

RESUMEN

Pharmacogenomics has the potential to inform drug dosing and selection, reduce adverse events, and improve medication efficacy; however, provider knowledge of pharmacogenomic testing varies across provider types and specialties. Given that many actionable pharmacogenomic genes are implicated in cardiovascular medication response variability, this study aimed to evaluate cardiology providers' knowledge and attitudes on implementing clinical pharmacogenomic testing. Sixty-one providers responded to an online survey, including pharmacists (46%), physicians (31%), genetic counselors (15%), and nurses (8%). Most respondents (94%) reported previous genetics education; however, only 52% felt their genetics education prepared them to order a clinical pharmacogenomic test. In addition, most respondents (66%) were familiar with pharmacogenomics, with genetic counselors being most likely to be familiar (p < 0.001). Only 15% of respondents had previously ordered a clinical pharmacogenomic test and a total of 36% indicated they are likely to order a pharmacogenomic test in the future; however, the vast majority of respondents (89%) were interested in pharmacogenomic testing being incorporated into diagnostic cardiovascular genetic tests. Moreover, 84% of providers preferred pharmacogenomic panel testing compared to 16% who preferred single gene testing. Half of the providers reported being comfortable discussing pharmacogenomic results with their patients, but the majority (60%) expressed discomfort with the logistics of test ordering. Reported barriers to implementation included uncertainty about the clinical utility and difficulty choosing an appropriate test. Taken together, cardiology providers have moderate familiarity with pharmacogenomics and limited experience with test ordering; however, they are interested in incorporating pharmacogenomics into diagnostic genetic tests and ordering pharmacogenomic panels.


Asunto(s)
Sistema Cardiovascular , Pruebas de Farmacogenómica , Humanos , Pruebas Genéticas , Farmacéuticos , Farmacogenética
11.
J Clin Oncol ; 42(10): 1181-1192, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38386947

RESUMEN

Pharmacogenomics (PGx), the study of inherited genomic variation and drug response or safety, is a vital tool in precision medicine. In oncology, testing to identify PGx variants offers patients the opportunity for customized treatments that can minimize adverse effects and maximize the therapeutic benefits of drugs used for cancer treatment and supportive care. Because individuals of shared ancestry share specific genetic variants, PGx factors may contribute to outcome disparities across racial and ethnic categories when genetic ancestry is not taken into account or mischaracterized in PGx research, discovery, and application. Here, we examine how the current scientific understanding of the role of PGx in differential oncology safety and outcomes may be biased toward a greater understanding and more complete clinical implementation of PGx for individuals of European descent compared with other genetic ancestry groups. We discuss the implications of this bias for PGx discovery, access to care, drug labeling, and patient and provider understanding and use of PGx approaches. Testing for somatic genetic variants is now the standard of care in treatment of many solid tumors, but the integration of PGx into oncology care is still lacking despite demonstrated actionable findings from PGx testing, reduction in avoidable toxicity and death, and return on investment from testing. As the field of oncology is poised to expand and integrate germline genetic variant testing, it is vital that PGx discovery and application are equitable for all populations. Recommendations are introduced to address barriers to facilitate effective and equitable PGx application in cancer care.


Asunto(s)
Pruebas de Farmacogenómica , Medicina de Precisión , Humanos , Farmacogenética , Pruebas Genéticas , Oncología Médica
13.
J Intern Med ; 295(5): 583-598, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343077

RESUMEN

Pharmacogenomics is the examination of how genetic variation influences drug metabolism and response, in terms of both efficacy and safety. In cardiovascular disease, patient-specific diplotypes determine phenotypes, thereby influencing the efficacy and safety of drug treatments, including statins, antiarrhythmics, anticoagulants and antiplatelets. Notably, polymorphisms in key genes, such as CYP2C9, CYP2C19, VKORC1 and SLCO1B1, significantly impact the outcomes of treatment with clopidogrel, warfarin and simvastatin. Furthermore, the CYP2C19 polymorphism influences the pharmacokinetics and safety of the novel hypertrophic cardiomyopathy inhibitor, mavacamten. In this review, we critically assess the clinical application of pharmacogenomics in cardiovascular disease and delineate present and future utilization of pharmacogenomics. This includes insights into identifying missing heritability, the integration of whole genome sequencing and the application of polygenic risk scores to enhance the precision of personalized drug therapy. Our discussion encompasses health economic analyses that underscore the cost benefits associated with pre-emptive genotyping for warfarin and clopidogrel treatments, albeit acknowledging the need for further research in this area. In summary, we contend that cardiovascular pharmacogenomic analyses are underpinned by a wealth of evidence, and implementation is already occurring for some of these gene-drug pairs, but as with any area of medicine, we need to continually gather more information to optimize the use of pharmacogenomics in clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Medicina de Precisión , Humanos , Warfarina/uso terapéutico , Pruebas de Farmacogenómica , Clopidogrel/uso terapéutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/diagnóstico , Anticoagulantes/uso terapéutico , Farmacogenética , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Vitamina K Epóxido Reductasas/genética
16.
Am J Case Rep ; 25: e942242, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311849

RESUMEN

BACKGROUND Reye syndrome is a rare, yet potentially life-threatening disease characterized by acute encephalopathy and hepatic failure. This report presents the case of an 8-year-old girl with Reye syndrome and seizures after the use of naproxen. CASE REPORT An 8-year-old girl experienced a 3-day episode of fever and abdominal pain. After receiving naproxen (375 mg twice daily) starting from day -3, she exhibited hypotension, tonic seizure, and loss of consciousness (day 1). Physical examination and laboratory test results revealed acute kidney injury, metabolic acidosis, and elevated levels of lactate dehydrogenase (LDH), liver enzymes, and ferritin. On day 2, the maximum values of aspartate aminotransferase, alanine aminotransferase, LDH, creatinine, and ferritin were 955 U/L, 132 U/L, 8040 U/L, 2 mg/dL, and >40000 ug/L, respectively. She was given supportive care and recovered after 11 days (day 12), with normalization of kidney function and metabolic abnormalities. To identify possible genetic polymorphisms associated with the patient's symptoms, genotypes were tested using a drug metabolizing enzymes and transporters (DMET) gene chip. Among genes involved in the metabolism of naproxen, UGT1A6 (*1/*2) and UGT2B7 (*1/*2) resulted in possibly decreased function. Other results which may have had clinical significance included homozygote results for NAT2*6/*6 (rs1799930). CONCLUSIONS A rare case of Reye syndrome after administration of naproxen was presented in this case. A DMET gene chip was used to screen for possible genetic polymorphisms associated with Reye syndrome, but the result was inconclusive.


Asunto(s)
Arilamina N-Acetiltransferasa , Síndrome de Reye , Femenino , Humanos , Niño , Síndrome de Reye/inducido químicamente , Síndrome de Reye/genética , Naproxeno/efectos adversos , Pruebas de Farmacogenómica , Fiebre , Convulsiones , Ferritinas
17.
J Child Adolesc Psychopharmacol ; 34(1): 4-20, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377525

RESUMEN

The efficacy and tolerability of psychotropic medications can vary significantly among children and adolescents, and some of this variability relates to pharmacogenetic factors. Pharmacogenetics (PGx) in child and adolescent psychiatry can potentially improve treatment outcomes and minimize adverse drug reactions. This article reviews key pharmacokinetic and pharmacodynamic genes and principles of pharmacogenetic testing and discusses the evidence base for clinical decision-making concerning PGx testing. This article reviews current guidelines from the United States Food and Drug Administration (FDA), the Clinical Pharmacogenetics Implementation Consortium (CPIC), and the Dutch Pharmacogenetics Working Group (DPWG) and explores potential future directions. This review discusses key clinical considerations for clinicians prescribing psychotropic medications in children and adolescents, focusing on antidepressants, antipsychotics, stimulants, norepinephrine reuptake inhibitors, and alpha-2 agonists. Finally, this review synthesizes the practical use of pharmacogenetic testing and clinical decision support systems.


Asunto(s)
Psiquiatría del Adolescente , Farmacogenética , Estados Unidos , Niño , Humanos , Adolescente , Psicotrópicos/uso terapéutico , Antidepresivos/uso terapéutico , Pruebas de Farmacogenómica
18.
J Child Adolesc Psychopharmacol ; 34(1): 28-33, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377526

RESUMEN

Introduction: Combinatorial pharmacogenetic testing panels are widely available in clinical practice and often separate medications into columns/bins associated with low, medium, or high probability of gene-drug interactions. The objective of the Adolescent Management of Depression (AMOD) study was to determine the clinical utility of combinatorial pharmacogenetic testing in a double-blind, randomized, controlled effectiveness study by comparing patients who had genetic testing results at time of medication initiation to those that did not have results until week 8. The objective of this post hoc analysis was to assess and report additional outcomes with respect to significant gene-drug interactions (i.e., a medication in the high probability gene-drug interaction bin as defined by a proprietary algorithm) compared with patients taking a medication with minimal to moderate gene-drug interactions (i.e., a medication from the low or medium probability gene-drug interaction bin, respectively). Methods: Adolescents 13-18 years (N = 170) with moderate to severe major depressive disorder received pharmacogenetic testing. Symptom improvement and side effects were assessed at baseline, week 4, week 8, and 6 months. Patients were grouped into three categories based on whether the medication they were prescribed was associated with low, medium, or high risk for gene-drug interactions. Patients taking a medication from the low/medium gene-drug interaction bin were compared with patients taking a medication from the high gene-drug interaction bin. Results: Patients taking a medication from the high gene-drug interaction bin were more likely to endorse side effects compared with patients taking a medication in the low/medium gene-drug interaction bin at week 8 (p = 0.001) and 6 months (p < 0.0001). Depressive symptom severity scores did not differ significantly across the medication bins. Conclusions: This study demonstrates the utility of gene-drug interaction testing to guide medication decisions to minimize side effect burden rather than solely prioritizing the search for the most efficacious medication. (Clinical Trials Registration Identifier: NCT02286440).


Asunto(s)
Trastorno Depresivo Mayor , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Adolescente , Pruebas de Farmacogenómica/métodos , Depresión/tratamiento farmacológico , Depresión/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/diagnóstico , Interacciones Farmacológicas , Probabilidad
19.
JAMA Netw Open ; 7(2): e2355707, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38349656

RESUMEN

Importance: There are an increasing number of medications with a high level of evidence for pharmacogenetic-guided dosing (PGx drugs). Knowledge of the prevalence of dispensings of PGx drugs and their associated genes may allow hospitals and clinical laboratories to determine which pharmacogenetic tests to implement. Objectives: To investigate the prevalence of outpatient dispensings of PGx drugs among Medicaid-insured youths, determine genes most frequently associated with PGx drug dispenses, and describe characteristics of youths who were dispensed at least 1 PGx drug. Design, Setting, and Participants: This serial cross-sectional study includes data from 2011 to 2019 among youths aged 0 to 17 years in the Marketscan Medicaid database. Data were analyzed from August to December 2022. Main Outcomes and Measures: PGx drugs were defined as any medication with level A evidence as determined by the Clinical Pharmacogenetics Implementation Consortium (CPIC). The number of unique youths dispensed each PGx drug in each year was determined. PGx drugs were grouped by their associated genes for which there was CPIC level A evidence to guide dosing, and a dispensing rate (No. of PGx drugs/100 000 youths) was determined for each group for the year 2019. Demographics were compared between youths dispensed at least 1 PGx drug and those not dispensed any PGx drugs. Results: The number of Medicaid-insured youths queried ranged by year from 2 078 683 youths in 2011 to 4 641 494 youths in 2017, including 4 126 349 youths (median [IQR] age, 9 [5-13] years; 2 129 926 males [51.6%]) in 2019. The proportion of Medicaid-insured youths dispensed PGx drugs increased from 289 709 youths (13.9%; 95% CI, 13.8%-14.0%) in 2011 to 740 072 youths (17.9%; 95% CI, 17.9%-18.0%) in 2019. Genes associated with the most frequently dispensed medications were CYP2C9, CYP2D6, and CYP2C19 (9197.0 drugs [95% CI, 9167.7-9226.3 drugs], 8731.5 drugs [95% CI, 8702.5-8759.5 drugs], and 3426.8 drugs [95% CI, 3408.1-3443.9 drugs] per 100 000 youths, respectively). There was a higher percentage of youths with at least 1 chronic medical condition among youths dispensed at least 1 PGx drug (510 445 youths [69.0%; 95% CI, 68.8%-69.1%]) than among 3 386 277 youths dispensed no PGx drug (1 381 544 youths [40.8%; 95% CI, 40.7%-40.9%) (P < .001) in 2019. Conclusions and Relevance: In this study, there was an increasing prevalence of dispensings for PGx drugs. This finding suggests that pharmacogenetic testing of specific drug-gene pairs should be considered for frequently prescribed PGx drugs and their implicated genes.


Asunto(s)
Medicaid , Pruebas de Farmacogenómica , Masculino , Estados Unidos , Humanos , Adolescente , Preescolar , Niño , Estudios Transversales , Citocromo P-450 CYP2D6 , Bases de Datos Factuales
20.
Pharmacogenomics ; 25(2): 79-95, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288576

RESUMEN

An increasing number of economic evaluations are published annually investigating the economic effectiveness of pharmacogenomic (PGx) testing. This work was designed to provide a comprehensive summary of the available utility methods used in cost-effectiveness/cost-utility analysis studies of PGx interventions. A comprehensive review was conducted to identify economic analysis studies using a utility valuation method for PGx testing. A total of 82 studies met the inclusion criteria. A majority of studies were from the USA and used the EuroQol-5D questionnaire, as the utility valuation method. Cardiovascular disorders was the most studied therapeutic area while discrete-choice studies mainly focused on patients' willingness to undergo PGx testing. Future research in applying other methodologies in PGx economic evaluation studies would improve the current research environment and provide better results.


Asunto(s)
Farmacogenética , Pruebas de Farmacogenómica , Humanos , Análisis Costo-Beneficio , Farmacogenética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA